Architecture

255×255×3

Too many high light candidate

New Observation

Classification is not supportive
 Correlation results is wrongly aligned

Reason

1, ambiguous ground truth where IOU>0.8 is positive and IOU<0.5 is negative 2, padding with 0 and sub-sampling, correlation realization

Solutions

IOU score, modify the ground truth form
 Align by convolutional kernel size and padding the results

Disentangle model

First, the extracted features are split into foreground features and background features to explore the relationship of them.

Ensure the separation of foreground and background by introducing similarity between foreground and background into the loss function.

Disentangle model

R:dist B: score

200

5

4 -

3 -

1

0

r:dist b:score

100

dist 2

R:iou B:score

Disentangle model

R:dist B:iou

R:iou B:score

Disentangle & commonsense model

Disentangle & commonsense model

R:dist B:score

R:iou B:score

Disentangle & commonsense model

R:dist B:score

R:iou B:score

Kernel-feature

Kernel-weight

Kernel-feature (commonsense)

Search-feature

Search-feature(commonsense)

Search-weight

OTB 100 Deformable convolution	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
dcn 0.389 0.000 0.518	dcn 0.540 1.692 363.0 0.105
commonsense	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
commonsense_alex 0.399 0.000 0.536	commonsense_alex 0.549 1.659 356.0 0.106
Train rpn by pretrained model	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
train_rpn 0.377 0.000 0.500	trainrpn 0.533 1.664 357.0 0.104
pretrained model	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
pretrain_rpn 0.416 0.000 0.555	pretrain_rpn 0.599 1.645 353.0 0.116

UISEE

Left-top: visualize features by tsne ----purple *: kernel-feature ; red o: (commonsense/dcn)kernel-feature ; yellow ^:search-feature ; blue x: (commonsense/dcn)search-feature

Left-bottom: heatmap right-top: tracking result Right-bottom: commonse weight / deformable offset

Disentangle

How to explicitly model the two clusters as fg/bg?

- 1, Assign different weights
- Hyperparameter that bias toward foreground correlation(is not the key-point) 2, Add an auxiliary loss
 - zero dot product between the fg/bg feature(can't ensure where is the
- foreground and where is the background)
- 3, reconstruction model
- 4, a new dataset
 - the background of datasets is random

Disentangle model

First, the extracted features are split into foreground features and background features to explore the relationship of them.

Disentangle + reconstruction model

Problem : Ensure the separation of foreground and background by introducing similarity
 between foreground and background into the loss function. can't explicitly separate foreground and background.
 method : In order to explicitly separate background and foreground, we design a reconstruction model,
 Refactoring features back to the original image, ensure the k_fg learned the feature of foreground.

Training dataset

From a ReID task : Eliminating Background-bias for Robust Person Re-identification

SOT New BaseLine

255×255×3

Learn commonsense weight, directly contact feature and weight

You See Future

0.555

Learn commonsense weight, fusion weight and feature, then contact with weight

OTB 100

Tracker name	Success	Norm Precision	Precision
commonsense1_alex	0.385	0.000	0.512
VOT			

	1	Success	_ I	NOTIL PLECISION	
pretrain_rpn	I	0.416	I	0.000	0.555

Tracker Name	Accuracy	Robustness	Lost Number	EAO
pretrain_rpn	0.599	1.645	353.0	0.116

Tracker Name	Accuracy	Robustness	Lost Number	EAO
commonsense1_alex	0.544	1.678	360.0	0.105

USEE

Learn commonsense weight, fusion weight and feature

OTB 100

Tracker name	Success	Norm Pred	cision P	recision	-
commonsense2_alex	0.383	0.000	ə	0.510	
VOT					
Tracker Name	Accuracy R	obustness	Lost Numbe	er EAO	-
commonsense2_alex	0.535	1.725	370.0	0.105	

Tracker name	Success	Norm Precision	Precision
pretrain_rpn	0.416	0.000	0.555

Tracker Name	Accuracy	Robustness	Lost Number	EAO
pretrain_rpn	0.599	1.645	353.0	0.116

directly contact feature fusion weight and feature, then and weight fusion weight and feature contact with weight

Left-top: visualize features by tsne ----purple *: kernel-feature ; red o: (commonsense)kernel-feature ; yellow ^:search-feature ; blue x: (commonsense)search-feature

Left-bottom: heatmap right-top: tracking result Right-bottom: original-heatmap

Deformable convolution

You See Future

Left-top: visualize features by tsne ---purple *: kernel-feature ; red o: (commonsense/dcn)kernel-feature ; yellow ^:search-feature ; blue x: (commonsense/dcn)search-feature

Left-bottom: heatmap right-top: tracking result Right-bottom: original-heatmap

OTB 100 Deformable convolution	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
dcn 0.389 0.000 0.518	dcn 0.540 1.692 363.0 0.105
commonsense	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
commonsense_alex 0.399 0.000 0.536	commonsense_alex 0.549 1.659 356.0 0.106
Train siamrpn by pretrained model	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
train_rpn 0.377 0.000 0.500	trainrpn 0.533 1.664 357.0 0.104
Siamrpn pretrained model	
Tracker name Success Norm Precision Precision	Tracker Name Accuracy Robustness Lost Number EAO
pretrain_rpn 0.416 0.000 0.555	pretrain_rpn 0.599 1.645 353.0 0.116
· · · · · · · · · · · · · · · · · · ·	

UISEE

Disentanglement with Capsule

Have Done

Further training to improve the performance
 Extend to more parts, body part disentangling

TODO

Try adding auxiliary loss or foreground mask as supervision Reconstruct the learnt fg/bg feature to the template, use the reconstruction MSE loss as supervision

Multiple Part Disentangling

1, Extend the fg/bg model to more parts

- 2, Eliminate the weight hyperparameter
- 3, Network assigns the weight to correlation of each part, as is similar in SENet

Results

Better than the fg/bg model but still well below the baseline … Observation: The learnt weights all converge to 0.5, might be the cause of poor performance

Multipart Disentangle model

<u>R:dist B:s</u>core

R:iou B:score

Disentangle + reconstruction model

Problem : Ensure the separation of foreground and background by introducing similarity
 between foreground and background into the loss function. can't explicitly separate foreground and background.
 method : In order to explicitly separate background and foreground, we design a reconstruction model,
 Refactoring features back to the original image, ensure the k_fg learned the feature of foreground.

Reconstruction

Reconstruction result:

Top-left: Original image

Top-right: combine reconstructed image

Bottom-left: reconstruct foreground feature

Bottom-right:

reconstruct background feature

Disentangle and Reconstruction model details

Train disentangle model and reconstruction model:

Separate the template feature into foreground and background by disentangle model, then learn a mask by a conv-net, fusion foreground feature and background feature to reconstruct image, compute the difference of original image and reconstructed image to train disentangle model and reconstruction model.

Reconstruct mask image by reconstruction model to make sure the mask is accurate enough.

GAN model details

After completing the training of the disentangle and reconstruction models, we get the foreground feature of template and the background feature of search by using these two models, then combine these two features into the generator to generate image, using discriminator to discriminate if the reconstructed image and original image is the same as the result of classification.

if we can get a accurate mask feature and mask image, the result of reconstruct mask will instead regression branch.

Disentanglement with Capsule

Multiple Part Disentangling

Problem

The regression branch doesn't work well in test phase. The bounding box is almost anchor itself. However, it works well on training and **validation**.

Multiple Part Disentangling

Guess: BN layer fails in small batch size configuration **Solution**

Replace the BN layer into batch size irrelevant GN layer

Other settings: partition the input channel to more capsules (1x1 kernel)

Results are same or worse…

Siamese RPN with common sense

You See Future

\weight

Search Original feature

Similarity weight

Original feature

UISEE

Commonsense feature

New heatmap

Original heatmap

UISEE

Deformable module to replace the common sense offset field

Res50 backbone

Template original feature

> Search original feature

UISEE

Deformable convolution

offset

Template deformable feature

Original heatmap

heatmap You See Future

Disentangle the feature into foreground and background

and background features are spin into foreground features the orthogonal disentangle. Second, penalty the foreground and background feature by similarity loss

> As the figure shows :
> Bottom-left : background
> Bottom-right : foreground
> The bg-branch and fg-branch learn different features

Disentangle model

R:dist B: score

R:iou B:score

300

500

iou

As the figure shows : Bottom-left : background Bottom-right : foreground The bg-branch and fg-branch learn different features

UISEE

VOT Tracker Name Accuracy Robustness Lost Number EAO Tracker name | Success | Norm Precision | Precision | 1.692 dcn 0.540 363.0 0.105 dcn 0.389 0.000 0.518 commonsense Tracker name | Success | Norm Precision | Precision Tracker Name | Accuracy | Robustness | Lost Number | EAO commonsense alex | 0.399 | 0.000 0.536 commonsense alex | 0.549 | 1.659 356.0 0.106 Train rpn by pretrained model Tracker name Success | Norm Precision | Precision Tracker Name | Accuracy | Robustness | Lost Number | EAO | 1.664 357.0 train rpn | 0.377 | 0.000 0.500 trainrpn | 0.533 0.104 pretrained model Tracker name | Success | Norm Precision | Precision | Tracker Name | Accuracy | Robustness | Lost Number | EAO | | pretrain rpn | 0.416 | 0.000 0.555 pretrain rpn | 0.599 1.645 353.0 0.116

UISEE

Disentanglement with Capsule

Multiple Part Disentangling

Move capsule out of the regression branch

1, better overall performance on test dataset

2, classification: too large heatmap regression: malfunctioning in test phase

3, Why perform well on validation set? Maybe capsule needs more data to generalize to new dataset

Disentangle and Reconstruction model details

Train disentangle model and reconstruction mode and GAN: top: after splitting template foreground and background, we contact them(with a learned mask) with noisy to reconstruct fake template image by the generator, then get a score by the discriminator bottom: fusion template foreground feature and search background feature(with mask) to reconstruct fake search image, then get a score by discriminator

Loss details

After about 100 train images, D_loss has fallen below 0.1, discriminator has been invalid

Loss details

Mask_loss: we use classification loss to learn mask by view the original mask as label,but during the training process ,mask_loss is in a state of **shock** Reason: too many softmax

1000 train images:

Loss details

reconstruct_loss: we use pixel_wise_loss to learn the reconstruction of image , and the reconstruct_loss is in a falling state

2000 train images: Reconstruct_img

Original_img

3000 train images: Reconstruct_img

Original_img

