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Abstract

Depth inference from a single image is a long-standing
challenge in the computer vision community. It is techni-
cally ill-posed since monocular cues like the scale ratio or
the objects variance are ambiguous for inference of depth.
In this paper, we propose the region support as the infer-
ence guidance to resolve the ambiguity. The region sup-
port is the regional segmentations each of which consists of
pixels at similar depths. It formulates the depth inference
working in two steps: first inferring the regional depth and
then refining the regional depth to pixel-wise depth. The
region-support depth inference is realized a novel network
consisting of three modules: generation of region support,
computation of regional depth and regional refinement to
pixel-wise depth. We first obtain the region support by a
novel clustering-based segmentation module and then use
the obtained region support as additional channel to infer
the initial pixel-wise depth, where the two modules share
the same multi-scale feature from a pyramid unit. Then we
use the region support as masks on the initial pixel-wise
depth to compute the regional depth. The regional refine-
ment to pixel-wise depth separately works on the initial
pixel-wise depth map by the target refinement and on the
regional depth map by the variance refinement. The tar-
get refinement makes the depth among each region close to
its stable mean depth while the variance depth models the
variance on the basis of the mean depth of each region. The
final refined depth map fuses the output of both refinements.
From the experiments on the NYU and KITTI datasets, we
can see both the regional depth and the two-steps regional
refinement can remarkably reduce the ambiguity and raise
the inference accuracy.

1. Introduction
The depth estimiation methods can be widely used in

robotics, autonomous vehicles, recognition tasks, visual lo-
calization and scene analysis [11, 4, 1, 5]. As monocular
images are the most readily available data, the depth in-
ference from a single image has attracted considerable at-

RGB Depth
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Region Support

SLIC-30 SLIC-80

Figure 1. The comparison of regional guidances. In the red boxes,
we can see the semantic guidance has conflicts with the different
depth of the ’light’. In the blue box, we can see both the instance
and the semantic guidance cannot offer supportive guide of the
’wall’ which varies a lot on the depth. The SLIC guidance over-
segments objects too much, which makes the regional guidance
too sensitive to adapt different scenes. As for our region support,
we can see it ensures the supportive information from the semantic
and instance guidance meanwhile resolves the ambiguitous situa-
tion beween different depth but same labels.

tention in the past decades [15, 3, 18]. It mostly relies on
monocular cues like the scale ratio, feature variance of ob-
jects and so on [3, 9], but these cues are ambiguous to guide
the depth inference. Many strategies have been proposed
to resovle the ambiguous problem, for example, using the
additional supportive guidance like semantic information to
guide the inference [17, 10, 20], discretizing the continuous
depth into interval values to regularize the inference space
[14], using the coarse-to-fine framework to arrange the in-
ference and so on. In this paper, we propose the region
support as the guidance for the depth inference and design
a novel region-support depth inference network which re-
alizes the depth inference by two stages: infering the re-
gional depth and refining the regional depth to the pixel-
wise depth.

The region support is a special kind of segmentation of
regions each of which consists of pixels at similar depths.
Like many regional guidances, it guides the inference by the
assumption that with the same regional label, the variance
of depth should be stable and continuous. However, most
regional guidance can not truely realize this assumption, as
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Figure 2. The region-support depth inference network. The network consists of three module: generation of region support, computation of
the regional depth and the regional refinement. A pyramid unit provides the multi-scale feature for all of the three modules. We first use the
clustering-based segmentation module to obtain the region support. Then we use the region support as additional information to support
the inference of the initial pixel-wise depth. After that, we can simply compute regional depth and regional feature using the region support
as masks on the initial pixel-wise depth and shared feature maps. The regional refinment module seperately works on the regional depth
and the initial depth map by the variance and the target refinement. The variance refinement infers the depth by computing the variance
based on the mean value of each region while the target module computes the variance of depth with the target of the mean value.

shown in Figure 1, the semantic guidance has problem in the
red box where the ’lights’ are at different depth but has the
same semantic label. Besides, in the blue box, objects like
’wall’ cross a long range of depth but the label is the same
for the region. As for the super-pixel based approaches,
the division of regions is too sensitive to adapt for different
scenes. Compared with these guidance, the region support
can effectively handle the above ambiguious situations.

We use the region support to formulate the depth in-
ference working in two steps: infering the regional depth
and refining to the pixel-wise depth. As shown in Figure
2, we design the region-support depth inference network to
carry out this two-steps formulation, which consists of three
modules: generation of the region support, computation of
the regional depth and regional refinement to the pixel-wise
depth. To generate the region support, we design a novel
clustering-based segmentation module which consists of the
pyramid feature extraction unit and the learnable clustering
segmentation unit. The pyramid unit provides the multi-
scale feature as the representation and then the clustering
unit takes into the multi-scale feature to generate the region
support by the clustering-based segmentation like [2, 13].
Then we combine the shared feature with the region sup-
port to infer the pixel-wise initial depth through several con-
volutional layers. The region support serves as masks for
the initial depth to compute the mean depth of each region,
meanwhile the masks are applied to the shared feature to
compute the regional feature map.

The regional refinement is conducted by the variance re-
finement and target refinement. The variance refinement
refines the regional depth by learning the variance on the
mean depth of each region while the target refinement re-
fines the initial depth to close to its mean depth of each re-
gion. The outputs of the two refinement sub-modules fuses

with each other to form the final depth map. A unified
loss function is proposed to ensure the end-to-end training,
which consists of the discriminative loss for the clustering
segmentation and berhu loss for the refinement module. For
the data without regional labels, we design a novel semi-
supervised loss which only uses the depth as supervision to
train the clustering module.

The region-support depth inference method reaches
state-of-the-art performance on the NYUv2 [12, 16] and
KITTI [5] datasets. From the alation analysis, we can see
both the formulation of the regional depth and regional re-
finement can effectively resolve the ambiguities and con-
straint the depth inference space. Our contribution can be
summarized in three folds:

• We propose the region support as the guidance for the
depth inference from a single image, which formulates
the depth inference as the infering of regional depth
and refining the regional depth to pixel-wise depth.

• We design a novel region-support depth inference net-
work with three modules: the generation of region
support, the computation of the regional depth and re-
gional refinement to pixel-wise depth. A unified loss
for each module is designed for the end-to-end train-
ing with a novel discriminative loss for the clustering-
based segmentation.

• The region-support depth inference reaches the state-
of-the-art performance on challenging datasets. Both
the formulation of the regional depth and regional re-
finement are proven to be effective to simplify the
depth inference.

2
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2. Related Work

There are many strategies to resolve the ambiguities dur-
ing the depth inference while the most related three strate-
gies to our method is using the semantic guidance, coarse-
to-fine formulation and discretizing the continuous depth
into intermediate depth. Many works found that combin-
ing the semantic segmentation task with the depth inference
can improve the performance for both tasks. Mostly the in-
tergration of the semantic segmentation and depth inference
are realized by the concatenation operation which treats the
semantic segmentation as additional guidance for the infer-
ence. Then the two tasks could be jointly optimized by the
end-to-end training with the multi-task loss. This kind of
strategy can reach sufficient performance benefiting from
the learnable usage of guidance from the joint optimiza-
tion, however, the semantic guidance has its natural con-
flicts with depth. Therefore, we propose the region support
to release the conflicts between regional guidance and true
depth. In addition, we form a much more explicit usage of
regional guidance by using the region support to form the
regional depth and regional refinement.

The coarse-to-fine strategy is a widely used strategy for
depth inference task, which seperates the inference process
into two steps: computing the coarse depth and refining the
coarse depth to the fine. Many methods built a two-stages
network to realize this strategy with different approaches to
compute the coarse depth or refine the coarse depth. Some
works contributed on the computation of coarse depth by
designing a more effective network to extract the multi-
scale feature, while others foucs on the post-processing like
the conditional random field (CRF) and iterative optimiza-
tion to enhance the refinement module. Compared with
these methods, we define the coarse depth as the regional
depth and design the variance and target refinement to ob-
tain the pixel-wise depth from the regional depth. Current,
discretizating the continious depth into discrete intermedi-
ate depth shows ability to resolve the ambiguities by trans-
forming the regression of depth into the classification of dis-
crete ranges of depth. The regional depth formulation can
be deemed as a special discretization which is more adap-
tive than the constant discretized ranges. Since the discrete
ranges changes for different scenes, we use the region sup-
port to adaptively discrete the continuous depth into the dis-
crete regional depth and then refine this discrete depth to
continuous depth.

3. Region-Support Depth Inference

As shown in Figure 2, the region-support depth inference
network has three modules: the generation of region sup-
port, the computation of regional depth and the regional re-
finement to pixel-wise depth. All of these modules share the
multi-scale feature from a spatial pyramid unit which con-

sists of 34 residual layers and a spatial pooling layer. The
generation of region support module uses 2D convolutional
layers to generate the clustering feature from the shared fea-
ture and uses a clustering-based segmentation approach to
generate the region support. The computation of regional
depth module first combines the shared feature with the ob-
tained region support to infer the initial depth and then use
the obtained region support as masks to compute the re-
gional coarse depth. The regional refinement module seper-
ately works as the variance refinement on the regional depth
and the target refinement on the initial depth. We fuse the
outputs of these two refinements to form the final depth
map. All of the three modules can be trained end-to-end
by a unified loss function for the clustering segmentation
and the regional refinement.

3.1. Generation of Region Support

3.1.1 Spatial Pyramind Unit

We adopt a spatial pyramid architecture to utilize multi-
scale features for the determination of the region support.
A standard ResNet [7] with 4, 10, 5, 5 basic residual blocks
is applied as the feature extraction. We conduct the sub-
sampling on the second and third block, so we get a sub-
sampled feature map with the 1/4 resolution size after the
residual layers. Then we employ the spatial pyramid pool-
ing unit [19] to enhance the multi-scale features by pooling
the feature map into four lower scales, i.e., 1/8, 1/20, 1/80
and 1/240. The sub-sampled feature maps respectively
pass through one convolutional layer with 1/4 input chan-
nel. After that, the sub-sampled feature maps are resized
into the 1/4 resolution size by bilinear interpolation and
concatenated together with the 1/4 resolution residual fea-
ture map. To fuse the multi-scale feature, we adopt two
de-convolutional units each of which has three layers: one
convolutional layer before the de-convolutional layer and
one after the de-convolutional layer. The concatenation skip
connection is used between the up-sampled feature map and
the previous feature map from the output of the first and sec-
ond residual block.

3.1.2 Clustering Segmentation

The region support is determined by the depth distribution
of the pixels, so it is quite different from the semantic or
instance segmentation. Besides, the label for each region
can not be strictly corresponding to a constant depth value
because the direct inference of the absolute depth for each
region is as difficult as infering the pixel-wise depth. So the
label for the region support can only reveal whether the pix-
els are at similar depth but do not represent the real depth.
The common detection based approaches like R-CNN or
Mask-RCNN is not useful for this task since the labels vary
dynamically for different scenes. Inspired by the Braban-

3
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Algorithm 1: Clustering Segmentation
Input: Feature Map F
Output: Region Support C

1 n = 0
2 1. Iteratively random select the seed p = (x, y) from R, until all C(p)

labeled to a certain region
3 2. Compute the related pixels P = (|F − F (p)|2 < δvar)
4 3. Compute the clustering center c = mean(F (P ))
5 4. Use c to replace F (p) and repeat step 2,3 twice.
6 5. Get the region P
7 6. Fuse the P with C, if the overlap between P and C > 70%,

C(P ) = n, else the non-overlapped C(P )=c+1
8 7. c = c+ 1
9 8. If c > 80 return C

10 δvar is empirically set to 0.16 at the begining and changed dynamically
during training. The final stable value is used for test.

der et al. [2] and Novotny et al. [13], we find out that
the clustering-based segmentation can satisfy the dynami-
cal labeling task since the label can be determined by the
distribution of the feature itself.

The shared multi-scale feature map first concatenates
with the two-channel location map to form the fused fea-
ture, which is different from the add operation in [13]. Then
four convolutional layers are used to refine the fused map
and adjust the channel to 16 to release the computational re-
source for the clustering. We design a modified mean-shift
clustering unit to obtain the segmentation from the refined
feature map which is shown in the Algorithm 1. Compared
with the common mean shift approach, we only shift the
clustering center for twice to save the time for segmentation
and add the fusion part to get a more stable division. Al-
though this clustering unit is fully differencial, it is not in-
volved into back-propogation because it will cost too much
memory due to the iterative clustering. To make this part
trainable, we propose the supervised and semi-supervised
loss.

3.1.3 Supervised and Semi-supervised Discriminative
Loss

The discriminative loss function for the clustering-based
segementation is formulated as the pull and push forces be-
tween and within clusters [2]. The pull force is realized by
penelizing the intra-cluster variance, which can be indicated
like

Lvar =
1

C

C∑
c=1

1

Nc

Nc∑
p=1

d‖µc − F (p)‖ − δve2+ (1)

Here,C is the number of regions,Nc is the number of pixels
in region c, µcis the mean feature of region c and F is the
fused feature map. ‖·‖ is the L1 distance and dxe+ is the
max(x, 0) function. The variance loss makes the embed-
ding of same region close the mean feature of this region
while the δv is the maxinum variance for each cluster. The
push force is realized by the distance loss which is shown

as

Ldist =
1

C(C − 1)

C∑
cA=1
cA 6=cB

C∑
cB=1

d4δv − ‖µcA − µcB‖e
2
+

(2)
The distance loss pushes the clusters away from each other
and at least has a distance of 4δv between two cluster cen-
ters. The final discriminative loss L = Lvar +Ldist is sim-
ilar to the loss function for general instance segmentation
[2, 13]. Novotny et al. [13] found directly minimizing the
inner variance can reach better performance, but we need
the variance δv to employ the Algorithm 1, so we still use
the clap version as [2] but with a dynamical δv . In our ex-
periments, the δv is first set by 0.16 and the updated after

each training step as δv = λ× δv +(1−λ)×
C∑
c=1

δc, where

δc is the variance in region c and λ is set by 0.99 in our
experiments.

For the data only having depth supervision D, we pro-
pose the semi-supervised loss. We first use the Algorithm
1 to obtain the region support and then compute the mean
depth for each region. After that, we can get the variance
for each pixel. We assume that if the variance is more than
δd which is empirically set as the max(D)−min(D)

20 , this pixel
is clustered in the wrong area. So the regions can be divided
as two sub-sets R and W which are the right division and
wrong division. For the right division, we want the feature
of the pixels are more close to the cluster center, while for
the wrong division, we want these pixel move away from
the cluster center. We design the Lwr to realize the pull and
push force which can be expressed as

Lrw = Lr + Lw, (3)

Lr =
1

R

R∑
r=1

1

Nr

Nr∑
p=1

d‖µr − F (p)‖ − δve2+, (4)

Lw =
1

W

W∑
w=1

1

Nw

Nw∑
p=1

d2δv − ‖µr − F (p)‖e2+. (5)

When the Lrw becomes zeros, all of the pixels are within a
distance of δv to its cluster center while at least 2δv from the
other cluster center. So we can simply use the Algorithm 1
to get the region support.

3.2. Computation of Regional Depth

The computation of regional depth works in two steps
where we first compute the initial pixel-wise depth and then
compute the mean depth for each region as the regional
depth. We adopt four residual units to reduce the channel
of the shared feature and then use three common convolu-
tional units to infer the initial depth for each pixel, where

4
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the final inference layer output the one channel depth map.
Then we use the obtained region support as masks to com-
pute the mean depth for each region. Since there are unla-
beled pixel if the number of regions becomes more than 80,
these unlabed pixels can not be used to compute the regional
depth, so we only use the initial depth as the regional depth
for there unlabeled pixels. At the same time, we also use
the region support as masks on the shared feature to com-
pute the regional feature as the supportive information for
the refinement module

3.3. Regional Refinement

The regional refinement works as the variance refine-
ment and the target refinement. The variance refinement
computes the variance of the mean depth value to infer the
exact depth for each pixel. We combine the regional depth
with the shared feature and the regional feature map as the
input for the variance refinement. The variance refinement
module consists of five convolutional units where the last
unit removes the Relu and the Normalization layer. Then
the regional depth adds the output to form the refined re-
gional depth. As for the target refinement, it shares the
structure of the variance refinement but with the combina-
tion of initial depth, regional feature and shared feature as
input. The output adds the initial depth map to form the re-
fined result. The target refinement computes the variance of
the initial depth for each pixel with regarding to the mean
dpeth of its region. The final depth map fuses the two re-
fined depth where we use a very simple average fusion in
this paper.

A behu loss [8] is adopted to train the refinement module
which can be indicated as

Ld =


∣∣∣log(d)− log(d

′
)
∣∣∣ ∣∣∣log(d)− log(d

′
)
∣∣∣ ≤ δd∥∥∥log(d)−log(d′ )∥∥∥+δ2d

2δd

∣∣∣log(d)− log(d
′
)
∣∣∣ > δd

.

(6)
Here, the d is the ground truth depth, d

′
is the predicted

depth, |·| is the L1 distance, ‖·‖ is the L2 distance and δd =
1
5max(log(dp)− log(d

′

p)).

3.4. Implementation Details

All of the convolutional and residual layers are followed
by the GroupNorm with group num 1 and ReLU unit except
for the last layers of the two refinement sub-modules. We
adopt the duplication padding for all of the convolutional
operation. We use the nearest interpolation for the spatial
pyramid pooling unit. The kernel size for the last three lay-
ers of the two refinement and the 14 layer is set to 1 × 1
while the deconvolutional layers have the 4× 4 kernel size.

3.5. Experiment

Table 1. The Region-support Depth Inference Network
unit index stride input output

Generation of Region Support
Pyramid Feature Extraction

Conv 1-2 1 3 64
Residual 3-6 1 64 128
Residual 7-16 2 128 128
Residual 17-22 2 128 256
Residual 23-27 1 256 256
SPP 28-30 2,5,20,60 256 512
conv 31-32 1 512 128
deconv 33 2 128 128

concatenate 33 with output of 16
conv 34 1 256 192
deconv 35 2 192 192

concatenate 35 with output of 6
conv 36 1 256 256

Clustering Segmentation
concatenate 36 with location map (X,Y)

conv 37-38 1 258 64
conv without norm 39-40 1 64 32
conv without norm, relu 41 1 32 16
cluster segmentation 42 1 16 1

Initial Depth Inference
concatenate 42 with 36

residual 42-45 1 257 128
conv 46-47 1 128 32
conv without norm 48 1 32 1
42 as masks on 48 49 1 1 1
42 as masks on 36 50 1 256 256

Variance Refinement
concatenate 49,36,50

conv 52-55 1 513 16
conv without norm, relu 56 1 16 1

add 56 with 49
Variance Refinement
concatenate 48,36,50

conv 59-62 1 513 16
conv without norm, relu 63 1 16 1
add 48 64 1 2 1

add 64 and 58, divide by 2
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