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Abstract

Deep stereo matching usually transforms the computa-
tion into the low-resolution space to reduce the computa-
tional burden. However, mapping the disparity map from
the low-resolution (LR) space to the high-resolution (HR)
space causes loss of details. Many efforts have been paid
on developing additional refinements to recover details. In
this paper, we propose an explicit context mapping method
that directly preserves details during the mapping process.
We formulate the mapping as a Bayesian inference, where
we deem the disparity map in the LR space as the prior and
that in the HR space as the posterior. We present the ex-
plicit context which is defined as the similarity between the
HR and LR disparity maps to realize the inference. Specif-
ically, we build an explicit context mapping module which
seamlessly integrates with stereo matching networks with-
out modifying original network architectures. Experiments
on the Scene Flow and KITTI 2012 datasets show that our
method outperforms the state-of-the-art methods.

1. Introduction
The computer vision community has paid many efforts

to increase the accuracy of stereo matching [24, 34, 31, 39].
Currently, the powerful deep neural networks bring the per-
formance to a new stage [38, 4, 23, 12]. Transforming the
computation into the low-resolution space [12, 4, 23, 17]
can reduce the high computational burden of deep neural
networks and provide a more reliable disparity map in ill-
posed areas such as the repeated pattern, occlusion, poor-
texture, and reflective surfaces. However, mapping the dis-
parity map from the low-resolution (LR) space to the high-
resolution (HR) space is prone to cause loss of details and
decrease the accuracy. Many methods recover the details
using additional cost aggregation and/or refinement mod-
ules [28, 32, 5, 9, 4, 16, 1, 36]. But the additional mod-
ules are not flexible to integrate with different networks. In
this paper, we propose an explicit context mapping method
that preserves details directly during the mapping. We build
the explicit context mapping module to seamlessly integrate

with stereo matching networks without modifying original
network architectures.

We formulate the mapping as a Bayesian inference prob-
lem, where we deem the disparity map in the LR space as
the prior and that in the HR space as the posterior. We pro-
pose the explicit context which is defined as the similarity
between the HR and LR disparity maps to realize the in-
ference. As shown in Figure 1(a), when the scale is 2, the
value at the position A of the LR disparity map DL corre-
sponds to four values at the positions a, b, c and d of the
HR disparity map DH , so the explicit context is the simi-
larity between DL and DH . We infer the posterior from the
prior by mapping LR disparity values to their corresponding
HR disparity values according to the similarity. We design
a learning-based similarity measure to compute the explicit
context by both the deep representations and relative posi-
tions of corresponding values.

For the details existing in the HR disparity map but dis-
appearing in the LR disparity map, the explicit context can-
not reliabely infer the HR disparity value from the corre-
sponding LR value because the similarity is too small. To
deal with this problem, we introduce the extended explicit
context which provides more corresponding LR values for
the inference. As shown in Figure 1(b), we extend the
corresponding LR disparity values of the DH(a) to eight-
connected values of DL(A). Then the extended explicit
context is computed by the learning-based similarity mea-
sure using the deep representations and relative positions
of DH(a) and its corresponding LR disparity values. The
posterior can be inferred from the most reliable prior by se-
lecting the most similar LR disparity value to compute the
HR disparity.

The explicit context mapping module is able to seam-
lessly integrate with stereo matching networks. For the
learning-based similarity, we form an adaptive location map
to represent the relative positions and use a very light unit
with only three 1 × 1 convolutional layers to compute the
similarity. For the extended explicit context, the selection
operation may break the end-to-end training, so we present
a fully differential aggregation function to approximate the
selection operation. Besides, the explicit context mapping
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Figure 1. The corresponding relations when scale is 2. (a) The
LR disparity value DL(A) at position A corresponds to four HR
disparity values at positions a, b, c and d (red color). (b) We take
DH at position a as an example. The HR disparity value DH(a)
at position a corresponds to the LR value DL(A) at position A
(red color). The eight-connected values of DL(A) are at A1....A8

(green color). DH at positions b, c, d have the same correspond-
ing relations at position a.

module can be used for the mapping on the cost volume
where the explicit context is computed by the similarity
between corresponding costs. To reasonably validate our
method, we test our explicit context mapping module on the
popular pyramid stereo matching network (PSMNet) [4].
Experiments on the Scene Flow and KITTI 2012 datasets
show that our method outperforms the PSMNet.

We summarize our contribution in two folds.

• We formulate mapping the disparity map from the LR
space to the HR space as a Bayesian inference and ex-
ploit the explicit context to realize the inference.

• We design an explicit context mapping module to
seamlessly integrate with deep stereo matching net-
works with no need for the modification of original
network architectures.

2. Related Work
The early works using deep neural networks for stereo

matching mainly contributed to designing better feature
extractors and similarity measures for the cost computa-
tion [37, 19, 38]. For these methods, the hand-crafted
post-processings like cross-based aggregation, conditional
random field (CRF), semi-global optimization (SGM),
filtering-based refinement were indispensable to get a suffi-
cient accuracy [33, 39, 10, 20, 24, 27]. Kendall et al. [12]
proposed an end-to-end trainable deep stereo matching net-
work, GC-Net, which uses a 3D convolutional auto-encoder
to model the context and geometry simultaneously. PSM-
Net [4] offers a more effective strategy to exploit the context
by the pyramid pooling module. Currently, Liu et al. [18]
and Cheng et al. [5] proposed to model the local context
as the affinity matrix for stereo matching . These methods
show that exploiting the context is the key to improve the
accuracy. In this paper, we explicitly model the context as
the similarity between the LR and HR disparity map and
use it to realize the mapping process.

The performance can also be improved using additional
cost aggregation and refinement modules [26, 9, 23, 36, 4].

Particularly, the EdgeStereo [28] and SegStereo [32] built
the refinement modules with additional guidance like the
edge and semantic segmentation, where the additional in-
formation is effective to recover the details by preserving
the HR image structure. However, integrating additional
modules with networks is not easy, which requires to elabo-
rately modify original network architectures. In this paper,
we design the explicit context mapping module which can
seamlessly integrate with networks as the up-sampling unit
for the cost volume and disparity map. Our explicit context
mapping module requires barely additional computational
resource or modification on the original network.

3. Explicit Context Mapping
3.1. Problem Formulation

Most existing stereo matching networks transform the
computation into the low-resolution (LR) space to effi-
ciently produce a reliable LR disparity map DL. To make
the result has the same resolution to the input images, we
need to compute the high-resolution (HR) disparity map
DH from the LR disparity map DL. This process can
be realized by mapping the LR disparity value DL(x, y)
to the HR disparity value DH(x

′
, y
′
). The correspond-

ing positions is determined by x =
⌊
x
′
/scale

⌋
and y =⌊

y
′
/scale

⌋
, where scale is the scale size between HR and

LR disparity maps and b c is the floor operation. In this
paper, we formulate this process as a Bayesian inference
where we deem the LR disparity map as the prior and HR
disparity map as the posterior. The Bayesian inference is
defined as

P (DH/DL) = P (DH , DL)/P (DL). (1)

The P (DL) indicates the corresponding relations that
whether LR disparity valueDL(x, y) is used to infer the HR
disparity DH(x

′
, y
′
). The P (DH , DL) is the similarity be-

tween the LR disparity valueDL(x, y) and the HR disparity
value DH(x

′
, y
′
). The P (DH/DL) donates the probability

that the HR disparity value DH(x
′
, y
′
) can be computed

by the LR disparity value DL(x, y). When DL(x, y) is the
corresponding LR disparity of DH(x

′
, y
′
), the P (DL) is 1,

otherwise the P (DL) is 0. When the mapping is an identity
mapping, the P (DH , DL) is 1. With the Bayesian formula-
tion, the mapping can be given by

DH(x
′
, y
′
) = P (DH/DL)×DL(x, y)

= P (DH , DL)/P (DL)×DL(x, y).
(2)

According to the Bayesian formulation, to preserve the
details during the mapping, we need to satisfy two condi-
tions. (1) P (DH , DL) should reliably reveal the similar-
ity between DH(x

′
, y
′
) and DL(x, y). (2) We can find

2
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a reliable corresponding value from P (DL) to infer the
DH(x

′
, y
′
).

For the first condition, we propose the explicit context
to represent the P (DH , DL). Since the critical component
is to preserve relevant details between different resolutions,
P (DH , DL) needs to correctly reveal the relation between
disparity values at the image structure 1 of the LR disparity
map DL and those of the HR disparity map DH . However,
we cannot get the HR disparity map to determine the im-
age structure. Many evidences demonstrate that the deep
feature from networks can model the image structure at a
certain scale [6, 2, 15]. Motivated by this observation, we
propose the explicit context which leverages the similarity
between the HR feature FH and the LR feature FL, to rep-
resent the similarity between HR and LR disparity values
and design a learning-based similarity measure to compute
the similarity. As we can directly get the features FH and
FL from networks, the Equation (2) is rewritten as

DH(x
′
, y
′
) = s(FH(x

′
, y
′
), FL(x, y))/P (DL)×DL(x, y),

(3)
where s(·, ·) is the learning-based similarity measure for the
HR and LR features.

We introduce the extended explicit context by expand-
ing the corresponding relations of P (DL) to make sure
every HR disparity can find a reliable correspondense in
the LR disparity map. As shown in Figure 1(a), HR dis-
parity value DH(x

′
, y
′
) at position a has only one corre-

sponding LR disparity value DL(x, y) at position A. When
the P (FH , FL) is low which means the DL(x, y) is not
a reliable correspondence for DH(x

′
, y
′
), the P (DL) is

not supportive to determine the exact value of DH(x
′
, y
′
).

The extended explicit context is modeled by extending the
corresponding values of HR disparity value DH(x

′
, y
′
) to

other LR disparity values connected to the DL(x, y). As-
suming we get n corresponding LR disparity values to the
DL(x, y), we can infer n + 1 HR disparity values from
the corresponding LR disparity values. The corresponding
LR disparity determined by P (DL) is at the position set T,
where (x, y) ∈ T if P (DL) = 1. The final HR disparity
value DH(x

′
, y
′
) is computed by selecting the most similar

DL(x, y) as prior, which is expressed as

DH(x
′
, y
′
) = s(FH(x

′
, y
′
), FL(x, y))×DL(x, y)

where (x, y) = argmax
(x,y)∈T

s(FL(x, y), FH(x
′
, y
′
)).

(4)

3.2. Explicit Context Mapping for Disparity Map

To realize the explicit context mapping for the disparity
map in the Equation (4), we design a relative location map

1In this paper, the image strcuture refers to edges, corners and junctions
[14, 29, 25]

for the similarity measure which describes the local geomet-
rical information between the corresponding values. The
relative location maps concatenate with the feature maps
as two additional channels. We adopt convolutional layers
with 1 × 1 kernel size to compute the similarity, which en-
sures that the similarity between DL(x, y) and DH(x

′
, y
′
)

is only calculated by the FL(x, y), FH(x
′
, y
′
) and their rel-

ative positions.
The extended explicit context for disparity map is mod-

eled as the Figure 1(b), where we expand the corresponding
values of HR disparity value DH(x

′
, y
′
) at position a to the

eight-connected values of the LR disparity value DL(x, y)
at position A. Donating the position a by (x

′
, y
′
), the cor-

responding position set T for DH(x
′
, y
′
) is {(x+ i, y+ j)}

where i, j ∈ {−1, 0, 1}. With the extended explicit con-
text, we can infer nine HR disparity values from the corre-
sponding LR disparity values DL(T ). To ensure the end-
to-end training with extended explicit context, we design
a fully differential aggregation function to approximate the
Winner-Take-All (WTA) selection of the most similar cor-
respondence. It fuses the extended context by the proba-
bility from the softmax function. Then the Equation (4) is
rewritten as

DH(x
′
, y
′
) =

∑
(x,y)∈T

σ(s(FH(x
′
, y
′
), FL(x, y)))

×P (DL)×DL(x
′
, y
′
),

(5)

where σ(·) is the softmax function which computes the
probability by the similarity σ(s(FL(x, y), FH(x

′
, y
′
))).

As the LR disparity DL is assumed to be reliable during
the Bayesian inference, mapping with the softmax value can
approximate the WTA selection. If the corresponding value
exists in the extended corresponding relations, the LR dis-
parity value directly represents the HR disparity value by
the identity mapping. Otherwise, the value is approximated
by fusing the corresponding values to ensure the smooth-
ness.

3.3. Explicit Context Mapping for Cost Volume

For the cost volume, the LR matching cost CL(d, x, y) is
computed by

CL(d, x, y) = cnn(FL(x, y),
∼
FL (x− d, y)). (6)

where d is the depth level, FL is the LR feature map from
the left image and

∼
FL is the LR feature map from the right

image, and cnn(·, ·) is the cost computation function real-
ized by convolutional networks. The similarity measure for
the HR and LR costs leverages both the feature map from
the left and right image, which is given by

P (CL, CH) =s(FH(x
′
, y
′
), FL(x, y))

× s(
∼
FH (x

′
− d

′
, y
′
),
∼
FL (x− d, y)).

(7)

3
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The extended corresponding relations on the cost volume
are determined by the eight-connected relations from both
the left and right images. Limited by the structure of the
cost volume, which is computed by shifting the image along
X dimension, there are 27 corresponding costs on the LR
cost volume CL. For the HR cost at (d

′
, x
′
, y
′
), the corre-

sponding position set of T is computed by

T ∈



(d, x+ i, y + j) i, j ∈ {−1, 0, 1};
(d+ 1, x+ i, y + j) i ∈ {0, 1}, j ∈ {−1, 0, 1};
(d− 1, x+ i, y + j) i ∈ {−1, 0}, j ∈ {−1, 0, 1};
(d+ 2, x+ i, y + j) i ∈ {1|, j ∈ {−1, 0, 1};
(d− 2, x+ i, y + j) i ∈ {−1}, j ∈ {−1, 0, 1};


.

The Equation (4) is rewritten as

CH(d
′
, x
′
, y
′
)=

∑
(o,m,n)∈T

CL(o,m, n)×

σ(s(FH(x
′
, y
′
), FL(m,n))×

s(
∼
FH (x

′
− d
′
, y
′
),
∼
FL (m− o, n))).

(8)

This operation approximates the real matching cost re-
sult computed from the HR feature, but it has large com-
putational complexity. Besides, the soft-argmin func-
tion selects the lowest matching cost along the D dimen-
sion to get the final HR disparity map. So the mapping
that won’t influence the selection is redundant. For exam-
ple, assuming the soft-argmin result for CL(:, x, y) is d,
then the soft-argmin result d

′
for CH(:, x

′
, y
′
) should be

d
′ ∈ [d ∗ scale, (d + 1) ∗ scale). Therefore, the mapping

on other depth level is not helpful to compute the final dis-
parity.

To efficiently realize the mapping on the cost volume,
we separate the mapping into two steps, first mapping along
the D dimension and then mapping along X, Y dimensions.
The extended explicit context is given by nine similarity
matrices from the left image and three similarity matri-
ces from the right image. S indicates the similarity matri-
ces computed by F (x

′
, y
′
) and F (T ) from the left image,

T ∈ {(x + i, y + j)} where i, j ∈ {−1, 0, 1}.
∼
S is the

similarity matrices computed from the right image between
∼
FL(x

′
, y
′
) and {

∼
FL(x− d, y),

∼
FL(x− d− 1, y),

∼
FL(x−

d + 1, y)}. The realization of the first step is shown in Al-
gorithm 1. The CL is first expanded through the identity
mapping to form C

′

L which has same size of CH . Then we

use the
∼
S to aggregate the C

′

L along D dimension by the
three connected corresponding relations. After that, the C

′

L

is squeezed along the X, Y dimenions to finish the map-
ping along D dimension. We select the most representa-
tive cost C

′

L(:, x
′
, y
′
) to represent the CL(x, y) according

to the similarity between FH(T ) and FL(x, y). The po-
sition set T is {(x ∗ scale + i, y ∗ scale + j)}, where

Algorithm 1: Mapping of Cost Volume along D
Dimension

Input: similarity matrices of left image S, similarity matrices of right

image
∼
S, LR cost volume CL

Output: Expanded LR cost volume C
′
L

1 S.shape: (9, H, W),
∼
S.shape: (3, H, W)

2 CL.shape: (D/4, H/4, W/4)
3 max d=192
4 scale=4

5
∼
S =softmax(

∼
S,dim=0)

6 C
′
L = CL.expand as(D, H, W)

7 for (i = 0; i <= 192; i + +) do
8 C

′
L[i, :, i :]+ = C

′
L[i, :, i :]×

∼
S(0)[:, : -i]

9 +C
′
L[i+scale, :, i :]×

∼
S(1)[:, : -i]

10 +C
′
L[i-scale, :, i :]×

∼
S(2)[:, : -i]

11 end
12 S

′
(0) = S(0).reshape as(H/4, W/4, 16)

13 S
′
(0) =softmax(S

′
(0), dim=-1)

14 C
′
L = C

′
L .reshape as(D, H/4, W/4, 16)

15 C
′
L =sum(C

′
L × S

′
(0), dim=-1)

16 C
′
L. shape:(D, H/4, W/4)

17 return C
′
L

i, j ∈ {0, 1, ..., scale}. The second step is similar to the
mapping on the disparity map as Equation (5), where the
difference is the mapping value C

′

H is with the shape of
(D, H/4, W/4). The corresponding position set T for the
CH(:, x

′
, y
′
) is {(x + i, y + j)} where i, j ∈ {−1, 0, 1}.

The mapping along the X, Y dimensions is computed by

CH(:, x
′
, y
′
) =

∑
(x,y)∈T

σ(s(FL(x, y), FH(x
′
, y
′
)))

×C
′

L(:, x
′
, y
′
).

(9)

4. Implementation
4.1. Learning-based Similarity Measure

We design a learning-based similarity measure using
both the deep representation and relative positions. The HR
feature is computed before the first sub-sampling unit, and
the LR feature is computed from the last 2D convolutional
layer. We use identity mapping to expand the LR feature
FL as the same size of HR feature FH to get the expanded
feature Fe. We concatenate Fe and FH along the channel
dimension to form the fused feature Ff . We design an adap-
tive location map G according to relative positions of cor-
responding values. The location map denotes how far the
pixels are to their mapping center. With the scale size 4,
the location map G of [x ∗ 4 : (x+1) ∗ 4, y ∗ 4 : (y+1) ∗ 4]
is calculated by

x
′
=


−2 −1 1 2
−2 −1 1 2
−2 −1 1 2
−2 −1 1 2

 , y
′
=


2 2 2 2
1 1 1 1
−1 −1 −1 −1
−2 −2 −2 −2

 .

The location map concatenates with the fused feature Ff as
two additional channels to form the similarity feature Fs.

4
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We adopt three convolutional layers with 1 × 1 kernel to
compute the similarity from the similarity feature Fs. Each
layer is followed by LeakeyRelu with 0.1 threshold except
for the last layer with output channel 1.

The extended explicit context is computed by shifting
the feature map and location map. We take the similarity
maps between FH(x

′
, y
′
) and FL(x − 1, y) as the exam-

ple. The fused feature Ff (:, 4 :) is obtained by concatenat-
ing FH(:, 4 :) with the expanded feature Fe(:, : −4). Four
zero-paddings are appended on the left side to get the fused
feature Ff . The location map G is calculated by

x
′
=


−4 −3 −2 −1
−4 −3 −2 −1
−4 −3 −2 −1
−4 −3 −2 −1

 , y
′
=


2 2 2 2
1 1 1 1
−1 −1 −1 −1
−2 −2 −2 −2

 .

4.2. Network Architecture

We use the pyramid stereo matching network (PSMNet)
as our baseline[4]. We add some little modifications to the
network but do not change the main structure. As we need
the HR feature from the network, we add four 2D convo-
lutional layers at the start of the network. Besides, limited
by the computational resource, we use the GroupNorm [30]
to replace the BatchNorm [11] with a group division of 32.
Using the GroupNorm ensures fairness when we test the
effectiveness of our method in different scales. The batch
size for PSMNet is hard to set more than 2 on a single GPU
when the scale is 4. For the computational efficiency, we
set the batch size to 8 when the scale is 8. For the training
loss, we use the SmoothL1 loss as PSMNet [4, 8]. The de-
tails of the architecture settings are shown in Table 1 in the
Supplement Materials.

4.3. Complexity Analysis

The complexity of using CUDA with GPU for convolu-
tional operation is O(log2(k

2)), where k is the kernel size.
As the similarity measure is realized by three 1×1 convolu-
tional layers, the computational complexity is the constant
time O(1). The aggregation function is built based on soft-
max, which has a complexity of O(log2(n) on the CUDA,
where n is the number of channels of the softmax dimen-
sion. The aggregation is with constant n where for the cost
volume n = 3, 9, and for the disparity map n = 9. So
the computational complexity of aggregation is also con-
stant time O(1). In theory, matrix product, matrix addition,
convolution and softmax operation can be performed par-
allel for all pixels and channels, so both the complexity of
similarity measure and aggregation are irrelevant to the in-
put size. For the mapping on the disparity map, the overall
complexity is O(1) as there is no iterative operation. For
the mapping on the cost volume, the overall complexity is
O(n) as we shift the

∼
S for n times, where n is the maximum

disparity. The actual storage cost is discussed in detail with
the experiments in Section 5.2.

5. Experiements
We evaluate our method on the Scene Flow [21], KITTI

2012 [7] and KITTI 2015 [22]. All networks are imple-
mented with PyTorch and optimized by a standard Adam
optimizer with β1 = 0.9, β2 = 0.999. The input images
to the network are preprocessed using the color normaliza-
tion with standard parameters on ImageNet as mean =
(0.485, 0.456.0.406), std = (0.229, 0.224, 0.225). Dur-
ing training, we randomly crop the image with a size of
(256×512) and set the maximum disparity value as 192. All
of the training parameters are the same as the open source
code of PSMNet [4]. With the modification of the normal-
ization unit and four additional 2D convolutional layers, we
reproduce the PSMNet as the baseline to test the effective-
ness of our method.

5.1. Benchmark Results

Comparisons on the Scene Flow dataset: Scene Flow
[21] is a large synthetic dataset containing 34896 training
images and 4248 testing images with size of 540×960. This
dataset has three rendered sub-datasets: FlyingThings3D,
Monkaa, and Driving. FlyingThings3D is rendered from
the ShapeNet [3] dataset and has 21828 training data and
4248 testing data. Monkaa is rendered from the animated
film Monkaa and has 8666 training data. The Driving is
constructed by the naturalistic, dynamic street scene from
the viewpoint of a driving car and has 4402 training sam-
ples. We use all of the three sub-datasets for the training
and use the standard test dataset for the evaluation.

We train our network for 8 epochs on the whole training
dataset with learning rate 0.001. The results are shown in
Table 1. Compared with other state-of-the-art methods like
CRL[23], DispNetC [9], GC-Net [12], StereoNet [13], Edge
Stereo [28], CSPN [5], we get the best performance with the
lowest EPE error. For the mapping on the disparity map, we
get 0.7012 of the EPE (end-point error) compared with the
baseline PSMNet (disparity) 0.92, which is the promotion
of 0.39 and 35.7% to the PSMNet (disparity). For the map-
ping on the cost volume, we get 0.5917 EPE compared with
PSMNet 1.09 EPE, which has a promotion 0.50 and 45%
to the PSMNet. Compared with EdgeStereo method [28]
with EPE of 0.751, our method on the cost volume achieves
0.1593 gain on EPE, and the mapping on the disparity map
obtain 0.045 gain on EPE.

Comparisons on the KITTI 2012 dataset: KITTI 2012
is a real-world dataset with street views from a driving
car. It contains 194 training stereo image pairs with sparse
ground-truth disparities obtained using LiDAR and another
200 testing image pairs without ground-truth disparities.
We take 160 images for training and left 34 images for eval-
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Table 1. Comparison on SceneFlow dataset
Method CRL[23] DispNetC [9] GC-Net [12] StereoNet [13] Edge Stereo[28] CSPN[5] PSMNet[4] PSMNet (disparity)[4] Ours on disparity Ours on cost volume

EPE 1.32 1.68 2.51 1.101 0.751 0.78 1.09 0.92 0.7012 0.5917

Table 2. Comparisons on KITTI 2012

Method >2 px >3 px >5 px Mean Error(px) Time(s)Noc All Noc All Noc All Noc All
M2S CSPN [5] 1.79 2.27 1.19 1.53 0.77 0.98 0.5 0.5 0.5

HD3-Stereo [35] 2.00 2.56 1.40 1.80 0.94 1.19 0.5 0.5 0.09
EdgeStereo [28] 2.32 2.88 1.46 1.83 0.83 1.04 0.4 0.5 0.32
SegStereo [32] 2.66 3.19 1.68 2.03 1.00 1.21 0.50 0.6 0.6
GC-Net [12] 2.71 3.46 1.77 2.30 1.12 1.46 0.6 0.7 0.9

PSMNet (disparity) [4] 2.76 3.84 1.68 2.59 0.91 1.45 0.6 0.6 0.37
PSMNet [4] 2.44 3.01 1.49 1.89 0.90 1.15 0.5 0.6 0.41

Ours on disparity map 2.61 3.72 1.58 2.43 0.90 1.43 0.5 0.6 0.37
Ours on cost volume 2.44 3.82 1.48 2.63 0.85 1.61 0.5 0.6 0.45

uation. We use the pre-trained model from SceneFlow and
fine-tune the model on KITTI 2012 for 1000 epochs, where
we use learning rate 0.001 the first 700 epochs and modify
it to 0.0001 for the left 300 epochs.

The comparisons with other state-of-the-art methods like
GC-Net [12], StereoNet [13], Edge Stereo [28], CSPN [5],
HD3-stereo [35], PSMNet [4] are shown in Table 2. We also
report the PSMNet (disparity) which gets the HR disparity
by the bilinear of disparity map. We can see our method for
the disparity map can outperform the PSMNet (disparity) by
0.15, 0.22 on the 2-px error, 0.1, 0.16 on the 3-px error and
0.01, 0.02 on the 5-px error. The explicit context mapping
on the cost volume outperforms the PSMNet in the non-
occlusion (Noc) areas which is 0.01 on the 3-px error and
0.05 on the 5-px error.

Comparisons on the KITTI 2015 dataset: KITTI 2015
is a real-world dataset with street views from a driving
car. It contains 200 training stereo image pairs with sparse
ground-truth disparities obtained using LiDAR and another
200 testing image pairs without ground-truth disparities.
We take 160 images for training and left 40 images for eval-
uation. The training process for KITTI 2015 is the same
as KITTI 2012. The results compared with state-of-the-art
methods are shown in Table 3. We also report the PSM-
Net (disparity) to compare with our method on the dispar-
ity map. Our method for the disparity map outperforms
the PSMNet (disparity) by 0.3, 0.58, 0.43 on the all pixel
estimation and 0.17, 0.32, 0.2 on the non-occluded areas.
Our method for the cost volume reaches comparable perfor-
mance with the PSMNet and outperforms PSMNet in the
non-occluded foreground areas by 7%.

On KITTI 2012 and KITTI2015 dataset, the promotion
of the PSMNet is much lower than it on the Scene Flow.
The reason comes from two sides. The first is that the sparse

ground truth suffers from the loss of details itself, so train-
ing with the sparse supervision draws back the effectiveness
of our method. The ground truth without details makes it ill-
posed for our method to preserve the details. Our method
is built based on the assumption that the LR results are re-
liable, so we can see our method can promote the PSM-
Net on the non-occluded areas. But it draws back the per-
formance on the occluded areas, the reason is obvious that
the mismatching results on the occluded areas will also be
propagated through the mapping process. The second is the
overfitting problem. We get a much low evaluation error on
the KITTI 2015 which is 1.63% of the 3-px error compared
with the 1.83% of PSMNet. We observe that the evalua-
tion error is much lower which has the promotion of 18% to
the baseline but the test error is worse than the baseline by
6%. The explicit context mapping method is not designed
to handle the ill-posed areas, where we focus on keeping
the details during the mapping which can further improve
the performance if we get a reliable matching result. The
experiments on the benchmarks show that our method can
promote the the PSMNet on the non-occluded areas.

5.2. Ablation

The ablation analysis is conducted on the Scene Flow
dataset. We train all of the comparsion models for 8 epochs
without using any pre-trained model. The results are shown
in Table 4.

5.2.1 Mapping on the Cost Volume and Disparity Map

We test the effectiveness of the explicit context module for
both the cost volume and disparity map. Compared with all
of the Baselines with Ours, both the mapping on the cost
volume and disparity map can obviously improve the accu-
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Table 3. Comparisons on KITTI 2015
Model All pixels Non-Occluded Pixels Time(s)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all
GC-Net[12] 2.21 6.16 2.87 2.02 5.58 2.61 0.9

HD3-stereo[9] 1.70 3.63 2.02 1.56 3.43 1.87 0.09
EdgeStereo[28] 2.27 4.18 2.59 2.12 3.85 2.40 0.27
StereoNet[13] 4.30 7.45 4.83 4.05 6.44 4.44 0.02

CSPN[5] 1.51 2.88 1.74 1.40 2.67 1.61 0.5
PSMNet (disparity)[4] 2.59 5.85 3.13 2.10 4.99 2.58 0.37

PSMNet[4] 1.86 4.62 2.32 1.71 4.31 2.14 0.41
Ours on the disparity map 2.29 5.27 2.79 1.93 4.67 2.38 0.37
Ours on tthe cost volume 2.29 4.93 2.73 1.90 4.06 2.26 0.45

Table 4. The Ablation on Scene Flow. EPE: End-point-error

ID Scale Mapping on
Disparity map

Mapping on
Cost Volume EPE Non-Occluded Memory(M) Time(s)4 8

Baseline1 X X 0.9251 0.8288 2931 0.37
Ours1 X X 0.7012 0.6056 3107 0.37

Baseline2 X X 0.8202 0.6970 3303 0.46
Ours2 X X 0.5978 0.5068 3870 0.51

Baseline3 X X 1.0306 0.9245 2229 0.19
Ours3 X X 0.9046 0.8086 2403 0.19

Baseline4 X X 0.9594 0.8562 2609 0.21
Ours4 X X 0.8449 0.7421 3106 0.25

racy.
The mapping on the disparity map gets the EPE of

0.7012 compared with Baseline1 0.9251, which is 24%
gaingain, and increases fewcomputational resource with
170M memory. By individually removing the additional
layers, we find that 40% of the additional memory comes
from the additional four 2D convolutional layers at the start
of the network which takes 68M , and the others come from
the computation of similarity. The mapping process won’t
increase the time cost, as the matrix production operation
can be realized by O(1) on GPU. From comparisons be-
tween Ours1 and Baseline1, we can see the promotion of
the mapping on the disparity map is obvious.

The promotion of the EPE estimated from all pixels is
0.225 and that on the non-occluded areas is 0.223 compared
to Baseline1 0.9251 and 0.8288. The EPE improves 23%
estimated from all pixel which is lower than 26% estimated
from the non-occluded areas. The reason is that the context
mapping relies on the correct low-resolution values. But for
the occluded pixels, the LR matching results are not reliable
at all, so the mapped values will get wrong values, which
decreases the EPE. While for the reliable non-occluded pix-
els, the mapping can enjoy the reliable mapping.

Our method on the cost volume gives the best results of
EPE 0.5068, which is 28% gain compared with Baseline2

0.6970. The increased accuracy not only comes from the
mapping process but also enjoys the cost aggregation per-
formance. In terms of resource cost, however, our method
slows down the Baseline2 by 0.05s and takes more com-
putational resource around 570M memory on GPU. The
slower speed and higher memory come from the shift op-
eration of the mapping along the D dimension. Although
our method increases the computational resource, it is still
more efficient than the other cost aggregation method using
deep neural networks whose cost aggregation module takes
more than 2400M memory on GPU [36]. From compar-
isons between Ours2 and Baseline2, the promotion of the
EPE estimated from all pixels are larger than that on the
non-occluded areas, which is 0.223 and 0.191. This is be-
cause the mapping on the cost volume can also realize the
cost aggregation which can rectify some of mismatching re-
sults. The different effectiveness between the occluded and
non-occluded areas is consistent on the KITTI benchmark.

5.2.2 Multi-scale Performance

We also test our method on the larger scale 8. Compared
with Ours1, Ours3 reduces about 24% memory and speeds
up about 0.2s with the drop of EPE by 0.2. This is because
the LR disparity map is not reliable when the scale becomes
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Ground Truth Mapping on
Disparity map

Mapping on
Cost volume

PSMNet

300%

500%

300%

500%

300%

500%

Basket

Leaves

Fence

Figure 2. Qualitative analysis on details of our method for disparity
map and cost volume (better with a zoom-in view). We visualize
the three classes with rich details, Basket, Leaves, Fence. The
image is scaled to 300% and 500% to get a clear view of the loss
of details.

larger, so the mapping will suffer from the wrong LR dispar-
ity values. Compared with Ours2, Our4 get a faster speed
of 0.25s and lower memory with 770M along with the drop
of EPE by 0.25. For comparison between Ours3 and Our1,
Our4 and Our2, we can see when the scale becomes large,
our method get a drop of accuracy from the unreliable LR
matching results. However, even the promotions, i.e. 10%
on disparity map and 11% on the cost volume are lower
than that on the scale 4, the explicit context mapping still
gives an obvious improvement on the large scale. Besides,
with the large scale, the improvement of efficiency is obvi-
ous. Some of the applications on the mobile platform can
only afford the scale of 8 or even lower, so our explicit con-
text mapping can be used for these applications to improve
accuracy.

5.3. Visualization

We visualize the mapping results compared with PSM-
Net on the Scene Flow. From Figure 2, we can see our
method effectively maintains the details like edges and cor-
ners. Besides, with the scale of 500%, we can see explicit
context mapping can keep the pixel-level image structure,
whose edge is as sharp as the ground truth. We can also see
the explicit context mapping can prevent the vanishment of
small objects by the illustration of the Leaves.

6. Discussion
Here, we discuss the potentiality of explicit context map-

ping for beyond applications. The mapping process is com-
mon for the pixel-wise labeling tasks like segmentation, op-
tical flow and so on. These methods normally suffer from
the high computational burden to handle the HR images, so
they always transform the computation into the LR space.
Therefore, the mapping back to the HR space is indispens-
able. In this paper, we test the explicit context for the stereo
matching, where it shows great effectiveness to preserve
the loss of details during the mapping. For other applica-
tions, both our Bayesian formulation of the mapping and
the explicit context mapping module are appropriate to han-
dle the mapping process. The Bayesian formulation makes
it applicable for other methods, where we can simply real-
ize the explicit context mapping by adjusting the similarity
measure and corresponding relations. For example, the LR
optical flow can be mapped to HR optical flow by the ex-
plicit context mapping, where the explicit context is com-
puted by the similarity between corresponding values. The
optical flow has a heavier computational burden than the
stereo matching, so the computation is always conducted
in a lower resolution. As we test in the multi-scale ex-
periments, the explicit context mapping can also keep the
promotion in larger scales. When the explicit context map-
ping provides sufficient accuracy on a large scale, it gives
a very efficient performance both in memory and speed.
The promotion might be limited for the semantic segmen-
tation because details are not indispensable to the final per-
formance for segmentation. However, the explicit context
mapping is beneficial for the small objects segmentation,
where the small objects like leaves can keep their shapes in
wide scenes, as shown in Figure 2.

7. Conclusions
In this paper, we have presented the explicit context map-

ping for the stereo matching. The explicit context is ef-
fective to support the Bayesian inference to preserve de-
tails. Modeling the explicit context as the similarity be-
tween HR and LR disparity map can help to align the
image structure between HR and LR space, which gives
sharp edges and keeps the shape of small objects. The
learning-based similarity can leverage both the relative po-
sition and deep representation to reliably reveal the rela-
tions between HR and LR disparity map. The extended
explicit context makes sure the inference can be realized
from at least one reliable prior. The explicit context mod-
ule can be used for the mapping on the disparity map and
cost volume. The explicit context mapping can be simply
trained end-to-end with other networks and do not change
original architectures of stereo networks. The extensive ex-
periments showed our method can improve the accuracy on
Scene Flow and KITTI datasets with less computational re-
sources.
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