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Abstract

With the success of deep neural networks, stereo match-
ing has made significant progress recently. Transforming
matching computation into a low-resolution space is a com-
monly used strategy to increase the matching accuracy with
low computational cost, but it also brings the inevitable
detail loss such as blur edges or even the disappearance
of small objects. Therefore, there remains a crucial issue:
how to map the low-resolution matching results back to the
high-resolution space with an acceptable loss. In this paper,
we propose a novel mapping method that explicitly mod-
els the local context between different resolutions for stereo
matching. Since each low-resolution value inherently corre-
sponds to a mapped region in the high-resolution space, we
deem the local context as a descriptor of how much a low-
resolution value could influence the mapped high-resolution
values. As the influence can be represented by the similari-
ties between correspondences, we present a novel learning-
based similarity measure to model a more supportive con-
text, which adds the location matrix as the additional geo-
metrical information to the deep feature. For the mapping
on the disparity map, besides the mapped region, we extend
the influenced region to the four connected regions to keep
more details. For the cost volume, the influenced regions
are extended to six connected regions. Our explicit con-
text mapping method reaches state-of-the-art performance
on the SceneFlow and comparable results on the KITTI
dataset.

1. Introduction
In the past decades, the computer vision community has

paid many efforts to increase the accuracy of stereo match-
ing [19, 25, 22, 29]. Currently, with the powerful deep
neural networks, stereo matching has reached a new stage
[28, 8, 2, 18], but the promotion of accuracy is built on
a high computational burden. Transforming the matching
into a low-resolution space can effectively increase the ac-
curacy while requiring a low computational resource [8, 2],
but it also brings the inevitable detail loss like blur edges or

even the disappearance of small objects. Therefore, it is a
crucial issue to appropriately map the low-resolution match-
ing results back to the high-resolution space. In this paper,
we propose the explicit context mapping method which can
keep more details while still requiring a low computational
resource.

The generic local context describes how much a pixel
can influence other pixels among a specific region. Explic-
itly modeling the local context as the affinity matrix shows
excellent performance on the depth completion and refine-
ment task with the constant resolution [12, 3]. By contrast,
the local context for the mapping of stereo matching de-
scribes how much a low-resolution value would influence
the high-resolution values within its mapped region. Cur-
rently, there are two approaches to model this kind of lo-
cal context: the traditional interpolation and the learning-
based up-sampling. The interpolation approaches such as
the nearest or bilinear model the local context by a sim-
ple linear relation [13, 27, 2]. It barely increases the com-
putational resource, but when the scales become large, the
linear relation cannot reliably reveal the true local context,
which greatly impairs the accuracy. The learning-based
up-sampling leverages the networks with sub-sampling and
up-sampling units to implicitly model the local context
[8, 2, 10]. It can maintain some details by the joint opti-
mization, but the implicit modeling requires a large com-
putational resource to extract the supportive context, which
lowers the efficiency of low-resolution matching.

In this paper, we propose to explicitly model the local
context as the similarities between the low-resolution val-
ues and their corresponding high-resolution values. We de-
sign a novel learning-based similarity measure to model a
more supportive context, which fuses the deep feature with
the location map to utilize the low-level geometrical infor-
mation. With the obtained similarities, we can simply form
the mapping matrices to compute the high-resolution val-
ues. However, the high-resolution value may get the wrong
value if the similarities are too small, which means the low-
resolution value cannot offer a reliable influence. To tackle
this issue, we extend the influenced region to the four con-
nected region when mapping on the disparity map. As
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Figure 1. The explicit context mapping for disparity map. For the
one connected mapping, each low-resolution value only influences
high-resolution values in the mapped region (red), where the same
color indicates correspondences. For the four connected mapping,
each low-resolution value would influence not only the mapped
region (red) but also the four connected regions (blue).

shown in Figure 1, each high-resolution value will be in-
fluenced not only by the mapped low-resolution value but
also the additional four connected values. As for the cost
volume, two additional regions along the depth dimension
are also involved. To fuse influences from different low-
resolution values, we design a fully differential aggrega-
tion function by multiplying similarities with their softmax
value.

We also design a novel stereo matching network with the
proposed mapping method. We adopt a siamese structure
with pyramid units to provide the multi-scale feature. All
sub-sampling units are applied before the cost computation
to form low-resolution feature volume. After that, the cost
computation can work efficiently in a low-resolution space
and finally produce a low-resolution cost volume. At the
same time, we can compute the mapping matrices as men-
tioned above with a very light similarity module composed
of three 2D convolutional layers. With the obtain mapping
matrices, we can choose to conduct the mapping on the
cost volume or the disparity map, where the explicit context
mapping method can be briefly used as the interpolation to
replace all of the redundant up-sampling layers.

The explicit context mapping method reaches state-of-
the-art performance on SceneFlow and comparable results
on KITTI, which promotes our method can increase the ac-
curacy with a low computational resource. The contribution
of our work can be summarized in three folds.

• We propose a novel mapping method that explicitly
models the local context between different resolutions
for stereo matching. The local context is represented

by the similarities computed from a novel learning-
based similarity measure.

• We design a novel deep stereo matching network with
the proposed mapping method and present the four
connected strategy for the mapping on the disparity
map and six connected strategy for the mapping on the
cost volume.

• The explicit context mapping method reaches state-of-
the-art performance on the SceneFLow. The explicit
mapping is proven to be effective to hold back the de-
tails loss with a low computational resource.

2. Related Work
Stereo matching has made significant progress in the

past few years owing to the powerful deep representa-
tion and joint optimization. Zbontar and LeCun [27] pro-
posed the first deep stereo matching network, where they
adopted convolutional layers to extract the deep represen-
tation and then computed the matching costs through the
fully connected layers. Sooner, Luo et al. [13] proposed
a more efficient pipeline by replacing the similarity mea-
sure with the inner product unit. At this stage, most deep
stereo matching only had a trainable feature extractor while
the post-processing like cross-based aggregation and con-
ditional random field (CRF) were indispensable to ensure
the accuracy [24, 29, 6]. Then Kendall et al. [8] proposed
an end-to-end trainable deep stereo matching pipeline, GC-
Net, which simultaneously modeled the context and geome-
try by the 3D convolutional auto-encoder. This architecture
is capable of obtaining the multi-scale feature and jointly
realizing the cost aggregation by the end-to-end training.
Later, the pyramid spatial pooling unit is used to strengthen
the representation by incorporating the nearly global con-
text into the feature [2]. Although the multi-scale feature
is beneficial for the accuracy, it also suffers from the loss
the details. Yu et al. [26] brought the low-level RGB fea-
ture to enhance the details during cost aggregation while
Liang et al. [10] used the feature constancy as supervi-
sion to promote the refinement. Song et al. [20] proposed
to use the edges as additional information to represent the
local context and Yang et al. [23] brought into the prior
knowledge from the segmentation results to regularize the
loss function. These approaches can resolve the loss of de-
tails, but they require a significant computational resource.
Currently, Khamis et al. [9] proposed the StereoNet which
added a hierarchical refinement on the GC-Net. The light
and efficient refinement module could ensure the accuracy
even transforming the matching into very low resolution.
Our explicit context mapping method serves as a general
mapping module which can both serve for the cost volume
and the disparity map. It fuses the high-level multi-scale
feature with low-level geometrical information to model the

2
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local context. In addition, the computation of the local con-
text barely increases the computational resource.

The two mostly related works to the explicit modeling
of local context are Liu et al. [12] and Cheng et al.[3],
who proposed to model the local context as the affinity ma-
trix. The affinity matrix describes how close two points
are in a space, which shows excellent performance for the
depth refinement and completion on the constant resolu-
tion. By contrast, the local context for the mapping of stereo
matching reveals the relations between different resolutions.
Compared with the common super-resolution task which
only gets the information of low-resolution, we get both the
high-resolution and low-resolution information. So we can
directly determine the mapped regions by the scale size and
then compute the similarities between low-resolution values
and high-resolution values as mapping matrices.

3. Explicit Context Mapping
We present the explicit context mapping method for

stereo matching. The requirements of the mapping method
are discussed in Section 3.1, where we theoretically formu-
late the mapping process as the computation of local con-
text. Then we introduce three ways to use the local con-
text in Section 3.2. Finally, in Section 3.3, we construct a
deep neural network for stereo matching with the proposed
mapping method and integrate the network with the three
strategies.

3.1. Problem Formulation

3.1.1 Mapping on Feature Volume

For stereo matching, the mapping from the low-resolution
to the high-resolution is realized on the 4D feature volume,
3D cost volume and 2D disparity map. The 4D feature vol-
ume is the concatenated feature map of matching candidates

V (x, y, d) = FL(x, y)⊕ FR(x− d, y), (1)

where FL and FR is the feature map of the left image
L and right image R, ⊕ is the concatenation operation 1.
V (x, y, d) is the feature representing the matching cost be-
tween the pixel L(x, y)and R(x − d, y). The mapping on
the 4D feature volume is always implicitly realized by the
de-convolutional layers with the skip connection, which can
be deemed as the fusion of multi-scale features as

V h(p) =

k3∑
i=1

ωiV
l(pi)

k3∑
i=1

ωi

+ V h′
(p). (2)

Here, V h is the high-resolution feature volume, V l is the
low-resolution feature volume, V h′

is the former high-
resolution feature from skip connection, p represents the

1The cost volume and disparity are computed for the left image.

postion (x, y, d), pi is related pixels determined by the ker-
nel size k of de-convolutional layers, and ω is the network
parameter representing the similarity between V l(pi) and
Vh(p). The 4D mapping can maintain the details by the
implicit realization of the cost aggregation, but the compu-
tation and usage of ω are a total black box. Besides, any op-
eration on the 4D volume will cause an unaffordable com-
putational resource to store the 4D volume. Therefore, in
this paper, we focus on the mapping on the cost volume and
disparity map.

3.1.2 Mapping on Cost Volume

The computation of cost volume is denoted as

C(x, y, d) = f(FL(x, y), FR(x− d, y)), (3)

where C is the matching cost and f(·) is the cost compu-
tation function. Compared with the feature volume, each
item C(x, y, d) directly represents the matching cost be-
tween L(x, y) and R(x − d, y). So the mapping for the
cost volume is expressed as

Ch(x, y, d) = ω × Cl(xl, yl, dl). (4)

We can directly determine the corresponding low-resolution
value Cl(xl, yl, dl) by the scale size s as xl = bx÷ 2sc,
where b·c is the exact division. The problem for this map-
ping is how to compute the ω which denotes how much the
low-resolution value will influence the high-resolution val-
ues. We regard the low-resolution cost Cl(xl, yl, dl) as the
regional cost on behalf of s3 high-resolution cost values. So
mapping is treated as computing simialrities between the re-
gional feature of the low-resolution cost and the pixel-wise
feature of high-resolution costs

ω = m(V h(x, y, d), V l(xl, yl, dl))

= m(Fh
L(x, y)⊕ Fh

R(x− d, y), F l
L(xl, yl)⊕ F l

R(xl − dl, yl))
,

(5)

where the m(·) is the similarity measure. However, con-
structing the high-resolution feature volume V h will take
too much resource, so we simplify the matching process by
using the feature map F to represent matching feature V .
This operation is realized by a two-steps mapping on the
x − y dimension and d dimension separately. When map-
ping on the x− y dimension, we use the F l

R(xl − dl, yl) to
represent the Fh

R(x − d, y), which means that the pixel-to-
pixel matching between L(x, y) and R(x − d, y) is repre-
sented by the pixel-to-region matching, then the Equation 5
is written as

ω = m(Fh
L(x, y)⊕ F l

R(xl − dl, yl), F
l
L(xl, yl)⊕ F l

R(xl − dl, yl))

= m(Fh
L(x, y), F

l
L(xl, yl))

.

(6)

3
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As for the mapping on the d dimension, we use the
F l
L(xl, yl) to represent Fh

L(x, y) as

ω = m(F l
L(xl, yl)⊕ Fh

R(x− d, y), F l
L(xl, yl)⊕ F l

R(xl − dl, yl))

= m(Fh
R(x− d, y), F l

R(xl − dl, yl))
.

(7)

3.1.3 Mapping on Disparity Map

The disparity map D indicates the pixel-wise matching be-
tween L(x, y) and R(x−d, y). The mapping on the dispar-
ity map is given by

Dh(x, y) = ω ×Dl(xl, yl)× 2s. (8)

The ω represents the similarities between the low-resolution
pixel Ll(xl, yl) and the high-resolution pixel Lh(x, y). The
computation of the ω can be directly obtained by

ω = m(Fh
L(x, y), F

l
L(xl, yl)) (9)

3.2. Computation of the Local Context

In this section, we introduce the computation of the lo-
cal context. We propose a novel similarity measure to fuse
the deep feature with the low-level geometrical information.
We present three ways to model the local context from the
computed similarities. For the basic one connected map-
ping, each high-resolution value will only be influenced by
one low-resolution values. We extend the influenced re-
gions to the four connected region for the disparity map and
six connected region for the cost volume. A fully differen-
tial aggregation function is designed to fuse the influences
from different low-resolution values, which can keep more
details and offer a better smoothness.

3.2.1 Learning-based Similarity Measure

We design a novel similarity measure to fuse the high-
level deep feature and low-level geometrical map. The
high-resolution and low-resolution deep feature is directly
obtained from the network. We first expand the low-
resolution feature as the same size of high-resolution fea-
ture by F e(x, y) = F l(xl, yl), where the F e is the ex-
panded feature map. Then we concatenate the expanded
feature map with the high-resolution feature map to form
the fused deep representation F f = Fh ⊕ F e. Despite the
deep representation, we also add location map as the geo-
metrical information. Compared with the work of Novotny
et al.[17], we design a more elaborate location map by using
the distance matrix G. The distance matrix denotes how far
the pixels are to their mapping center, where with the scale
size s, the distance matrix for each region is computed as− 2s

2
· · · −1 1 · · · 2s

2
...

...
...

...
...

...
− 2s

2
· · · −1 1 · · · 2s

2

 . (10)

Then we concatenate G with GT to form the two channel
distance map as the geometrical representation F g . Finally,
we adopt three convolutional layers as m(·) to compute the
similarity as

M = m(F f ⊕ F g). (11)

3.2.2 One Connected Mapping

For the basic one connected mapping, each high-resolution
value Ch(x, y) or Dh(x, y) will only be influenced
by its corresponding low-resolution value Cl(xl, yl) or
Dl(xl, yl), where xl = bx÷ 2sc with the scale size s. For
the mapping on the disparity map, we can directly compute
the similarity matrix on the left image as Equation 11 and
then expand the low-resolution disparity map into the ex-
panded high-resolution map De. The high-resolution dis-
parity is computed as

Dh(x, y) = De(x, y)×M(x, y)× 2s. (12)

The mapping on the cost volume is realized by two steps.
We first expand the low-resolution cost along the x, y di-
mensions to get Ce. Then we use the representation com-
puted from the left image to form the similarity matrix as
Equation 6 and compute the high-resolution volume as

Ce(x, y, dl) = Ce(x, y, dl)×M(x, y). (13)

After that, we expand the Ce along the d dimension and
compute the similarity matrix by the representation from
the right image as Equation 7. The final high-resolution
cost volume is computed by

Ch(x, y, d) = Ce(x, y, dl)×M(x− d, y). (14)

The one connected mapping can compute the high-
resolution values by the influence from low-resolution val-
ues. However, if the similarity is minimal which means the
low-resolution values weakly influence the high-resolution
values, how can we compute the high-resolution values?
Here, we tackle this problem by extending the influenced
region of each low-resolution value, in other words, each
high-resolution value will be influenced by more than one
low-resolution value. The extension of regions can not only
solve the above problem but also realize the local aggrega-
tion to offer better performance.

3.2.3 Four Connected Mapping

For the mapping on the disparity map, we extend the in-
fluenced region to the four connected region. Besides the
Equation 9 to compute the ω1, we compute four additional
similarities as

ω2 = m(Fh
L(x, y), F

l
L(xl − 1, yl))

ω3 = m(Fh
L(x, y), F

l
L(xl + 1, yl))

ω4 = m(Fh
L(x, y), F

l
L(xl, yl − 1))

ω5 = m(Fh
L(x, y), F

l
L(xl, yl + 1))

(15)
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The final high-resolution disparity is computed by fusing
the five similarities. We design a fully differential fusion
function using the softmax weights σ(·). The mapping to
the high-resolution space is expressed as

Dh(x, y) = Dl(xl, yl)× ω1 × σ(ω1)× 2s

+Dl(xl − 1, yl)× ω2 × σ(ω2)× 2s

+Dl(xl + 1, yl)× ω3 × σ(ω3)× 2s

+Dl(xl, yl − 1)× ω4 × σ(ω4)× 2s

+Dl(xl, yl + 1)× ω5 × σ(ω5)× 2s

. (16)

3.2.4 Six Connected Mapping

For the mapping on the cost volume, besides the four con-
nected regions, we extend two additional regions along the
depth dimension. The computation of similarities is ex-
pressed as

ω6 = m(Fh
R(x, y), F

l
R(xl − dl − 1, yl))

ω7 = m(Fh
R(x, y), F

l
R(xl − dl + 1, yl))

. (17)

We first map along the x, y dimensions by four connected
mapping as Equations 13 and 16 to compute Ce. Then the
high-resolution cost volume is obtained by

Ch(x, y, d) = Ce(x, y, dl − 1)× ω6 × σ(ω6)

+ Ce(x, y, dl + 1)× ω7 × σ(ω7)
. (18)

Both the Equations 16 and 18 can be efficiently con-
ducted by the broadcast matrix multiplication as Equation
12 shows.

3.3. Deep Stereo Matching with Explicit Mapping

We design a novel stereo matching network which real-
izes the proposed mapping method on the cost volume and
the disparity map. The network uses the pyramid stereo
matching network (PSM) [2] as the baseline. Instead of sub-
sampling the images at the first layer of the network, we add
four convolutional layers to extract the full resolution fea-
ture map. As shown in Table 1, the first sub-sampling is
employed at layer 5 with stride 2. For the scale s = 2, the
second sub-sampling is employed at layer 9 as PSM. As for
the scale s = 3, the second and third sub-sampling are em-
ployed at layer 6 and 9, while for the scale s = 4, the sub-
sampling operations are employed at 6, 9 and 24 layers. We
adopt a standard pyramid pooling unit with the averaging
pooling size of 64×64, 32×32, 16×16, 8×8. Then layer 34
outputs the fused multi-scale feature with 1/2s resolution.
After that, we can combine the multi-scale deep feature with
out location map and compute the mapping matrix as dis-
cussed in Section 3.2.1. The multi-scale features from the
left and right images are used to construct the feature vol-
ume as shown in Section 3.1.1. We adopt the same 3D con-
volutional layers and three stacked hourglass modules as the

Table 1. Network Setting
unit index stride input output

Pyramid Feature Extraction
Conv 1-4 1 3 32
Conv 5-6 2 32 32
Residual 6-8 1 32 32
Residual 9-24 2 64 64
Residual 24-26 1 128 128
Residual 26-28 1 128 128

Spatial Pooling Size: 64× 64, 32× 32, 16× 16, 8× 8
SPP 29-32 1 128 128

concatenate output of 24,28 29,30,31,32
Conv 33-34 1 320 32

Computation of Local Context
take output of 4 and 34

Conv 35-38 1 66 1
Feature Volume

concatenate left and shifted right feature
3D CNN

3dConv 39-42 1 32 32
hourglass 43-48 1 32 32

cost1: add 48 and 42
hourglass 49-54 1 32 32

cost2: add 54 and 42
hourglass 55-60 1 32 32

cost3: add 60 and 42
Cost Volume

3dConv on cost1 61 1 32 1
3dConv on cost2 62 1 32 1
3dConv on cost3 63 1 32 1
3D mapping cost1: six connected mapping on output of 61
3D mapping cost2: six connected mapping on output of 62
3D mapping cost3: six connected mapping on output of 63

Disparity map
D1: soft-argmin on cost1
D2: soft-argmin on cost2
D3: soft-argmin on cost3

2D mapping D1: four connected mapping on D1
2D mapping D2: four connected mapping on D2
2D mapping D3: four connected mapping on D3

PSM to compute the cost volume. Finally, we can choose to
use the proposed six connected mapping method to map the
1/2s resolution cost volume into full-resolution cost vol-
ume and use the standard soft-argmin function [8, 26, 2] to
regress the disparity map. Or, we can directly use the soft-
argmin function to compute the disparity map with 1/2s

resolution and then employ four connected mapping to get
the full-resolution disparity map.

3.3.1 Implementation Details

Except for the 61, 62, 63 layers, all of the convolutional
layers are followed with the GroupNorm [21] and ReLu
[14]. The reason we choose the GroupNorm rather than
the BatchNorm [7] is to keep the fairness between different
scale sizes. When the scale size is 2, the batchsize is hard to

5
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Table 2. The Ablation on FlyingThings3D. EPE: End-point-error
ID Hourglass Scale On Disparity Map On Cost Volume EPE EPE Non-Occluded Memory(M) Time(s)

2 3 4 One
Connection

Four
Connection

One
Connected

Four
Connected

Six
Connected

BaseLine1 X X 0.8202 0.6970 5805 0.68
Exp1 X X X 1.2510 1.1700 2931 0.61
Exp2 X X X 1.1138 1.0257 3303 0.65
Exp3 X X X 0.7564 0.6162 6533 0.72
Exp4 X X X 0.7012 0.6056 6935 0.81
Exp5 X X X 0.6587 0.5575 8264 0.83
Exp6 X X 0.7367 0.5850 6781 0.58

BaseLine2 X X 0.9848 0.8809 3479 0.21
Exp7 X X X 1.4749 1.4175 2229 0.19
Exp8 X X X 0.9599 0.8695 6381 0.44
Exp9 X X 0.9046 0.8060 5477 0.25

BaseLine3 X X 1.9162 1.8085 3702 0.16
Exp10 X X X 2.2570 2.1496 2161 0.12
Exp11 X X X 1.6858 1.5815 6085 0.36
Exp12 X X 1.6405 1.5482 5343 0.20

set more than 8 on a single GPU, which is shown to have a
big impair of accuracy [21]. So we use group normalization
for all of the networks with different scales to remove the
influence of different normalization units. Besides, the av-
erage pooling size for the spatial pyramind pooling module
always ensures the largest kernel can obtain the global view
by pooling the feature map as 1× 1 size. So we modify the
pooling size as 32× 32, 16× 16, 8× 8, 4× 4 for the scale 3
while 16×16, 8×8, 4×4, 2×2 for the scale 4. We use the
standard Smooth L1 as Fast-RCNN and PSM [2, 4] to train
the whole network.

4. Experiement

In this section, we show the evaluation results of our
method on SceneFLow [15] and KITTI 2015 [16]. All
networks are implemented with PyTorch and optimized
by a standard Adam optimizer with β1 = 0.9, β2 =
0.999. The inputs to the network are preprocessed
using the color normalization with standard parameters
on ImageNet as mean = (0.485, 0.456.0.406), std =
(0.229, 0.224, 0.225). During training, we randomly crop
the image with size of (256, 512) and set the maximum dis-
parity as 192. The batch size is set as 4 for all of the training
on four Nvidia 1080Ti GPUs (each of 1).

4.1. Ablation Studies on SceneFlow

SceneFlow is a large synthetic dataset containing 34896
training images and 4248 testing images with size of 540×
960. This dataset has three rendered sub-dataset: FlyingTh-
ings3D, Monkaa and Driving. FlyingThings3D is rendered
from ShapeNet [1] dataset and has 21828 training data and
4248 testing data. Monkaa is rendered from the animated
film Monkaa and has 8666 training data. The Driving is
constructed by the naturalistic, dynamic street scene from
the viewpoint of a driving car and has 4402 training sam-
ples. Here, we use the FlyingThings3D as the training
and testing dataset for the ablation of the explicit mapping

method with different network settings and different scales.
All of the baseline models are first trained for 7 epochs.

Then both comparison models and baseline models are ini-
tialized from the 8 epochs pre-trained models and trained
for other 7 epochs. The baseline models are built based on
the PSM with different scales. We add five additional layers
to extract the full-resolution feature and replace the Batch-
Norm with the standard GroupNorm (group = 32). The
quantity results are shown in Table 2.

4.1.1 Acuracy and Efficiency Analysis

For the scale 2, BaseLine1 is the standard PSM. The Exp1
and Exp2 directly regress the low-resolution disparity map
and use the context mapping to get the high-resolution dis-
parity map. The explicit context mapping reduces more
than 2500M memory, which comes from the 3D convolu-
tional layers on the full-resolution cost volume. Using only
57% memory, the EPE error is increased by 0.43 and 0.29
in contrast with the EPE on the non-occluded pixels reduc-
ing by 0.03. The reason for this result is that the context
mapping relies on the correct low-resolution values. But for
the occluded pixels, the matching results are not reliable at
all, so the mapped values will also get wrong values, which
increases the EPE. While for the reliable non-occluded pix-
els, the mapping offers a further promotion. We try to train
the four connected mapping on the disparity for other 11
epochs and find out the EPE error comes down to 0.7614
and 0.6200, which means the context mapping for the dis-
parity map ensures the BaseLine accuracy, but it is much
harder to learn. The Exp2 has a 0.14 promotion on EPE
from the Exp1, which shows that the four connected map-
ping offers a better smoothness on the occluded pixels.

The Exp3, 4, 5 remarkably reduce the EPE error both on
all pixels and non-occluded pixels. The additional 700M
memory between Exp3 and BaseLine1 comes from stor-
ing the three expanded full-resolution cost volume each of
which is 200M and 100M for the three convolutional layers
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of the similarity measure. The additional 400M memory
of the Exp4 comes from the computation of the other four
mapping matrix. We see the computation of local context
costs about 100M for each mapping matrix. This only in-
creases the storage without the training parameters since the
parameters are shared for all similarity computation. The
increase of memory 1329M of Exp5 comes from the map-
ping along the depth dimension, since we expand the map-
ping matrix as the same size of cost volume which cannot
be automatically freed during training. Comparing the EPE
error of Exp3, 4, 5, we see the extension of connected re-
gions obviously increases the accuracy. The EPE of Exp4,
5 on the non-occluded pixels shows that the extension along
the depth dimension can effectively map the right matching
results, where the 0.5 promotion of EPE mainly comes from
the non-occluded pixels. Comparing the EPE and Memory
of Exp2 and Exp4, we see the context mapping on the cost
volume offers better performance with 0.55 promotion on
accuracy while the mapping on the disparity map offers a
better efficiency with 3230M decrement of memory.

For the scale 3, we build BaseLine2 with sub-sampled 8
times PSM. Comparing BaseLine2 and BaseLine1, we see
the sub-sampling reduces 2326M about 40% memory with
the weakness of EPE 0.1646. The sub-sampling also of-
fers a 58% promotion on speed, where we only need 0.2 s
to run the whole network. The Exp7 shows the four con-
nected mapping on disparity promotes 35% on the memory,
but the 48% higher EPE impairs the promotion on the ef-
ficiency. We also train the Exp7 model with additional 11
epochs and find out the final accuracy reaches 1.0016 and
0.8790. Comparing Exp8 and BaseLine2, we find the 0.08
promotion also mainly comes from the non-occluded pixels.

For the scale 4, we see the networks get a distinct weak-
ness on EPE with an obvious increase of speed. We can
run the whole network with almost 0.12s. The 17% weak-
ness of the four connected mapping with the BaseLine3 is
not as large as the experiments on the low scales. We also
prolong the training to 11 epochs and finds the EPE comes
to 1.832 and 1.8286. From the prolonged training of Exp2,
7, 10, we conclude that it is indeed harder to train the four
connected mapping of disparity map than the mapping on
the cost volume. But with the additional training, the four
connected mapping on disparity at least maintain the accu-
racy with more than 40% lower computational resource and
0.03s promotion on speed. Comparing the promotion on
EPE from Exp11, BaseLine3, Exp9, BaseLine2 and Exp5,
BaseLine1, we see the six connected mapping on the cost
volume effectively increase the accuracy. The promotion
of explicit mapping gets lower when the scale becomes,
which is sensible because the mapping needs the right low-
resolution values. And when the scale becomes larger, the
low-resolution matching results are not very reliable, so the
effectiveness of mapping is impaired.

We also evaluate how much the hourglass contributes to
stereo matching networks. From Exp5 and Exp6, we see
the hourglass structure offers a promotion of 0.08 EPE of
all pixels and 0.03 EPE of non-occluded pixels, where the
promotion mainly comes from the occluded pixels. But for
the scale 3 and 4, the hourglass even lowers the accuracy
from the Exp8, 9 and Exp 11, 12. The reason is that the
hourglass structure can correct the wrong matching results
when wrong matching has a small account. However, when
the scale becomes larger, the account of wrong matching re-
sults becomes larger. The hourglass module cannot modify
most of them but accumulating the error by the addition op-
eration. This also proves that the promotion of our mapping
method relies on a reliable low-resolution matching. It in-
deed promotes the baseline with any kinds of low-resolution
matching results but for a better baselien, the promotion is
higher.

It is also noting that, although the six connected mapping
takes an obvious large memory, we only need a constant
memory 700M to compute the mapping matrices. The other
memory is not caused by the mapping method itself. The-
oretically, after computing the mapping matrices, the map-
ping can directly be conducted by the broadcast matrix mul-
tiplication which has the complexity of O(1) on GPU. The
increasing of time and memory mainly comes from the ex-
panding realization. We also build an efficient approach for
memory by replacing the expandation with the circulative
mapping, where the memory is reduced about 800M than
the Baseline models but with an increase of time 0.84s. This
comes from the unsupportive built-in multi-process module.
Our method could be definitely optimized to have the same
memory and speed as the built-in bilinear and trilinear in-
terpolation in PyTorch with the basic Cuda realization.

4.1.2 Qualitaty Analysis

We visualize the results on the FLyingThings3D on the Fig-
ure 2 with the four connected mapping on the disparity map
and six connected mapping on the cost volume. We observe
that the six mapping method preserves most of the details
while the four connected mapping will lose some details at
the edges. Along with the increasing of the scale, the loss
of details is inevitable but the explicit context mapping ef-
fectively holds back the loss.

4.2. BenchMark Results

4.2.1 SceneFlow

We use the pre-trained model on the FlyingThings3D and
finetune on the whole dataset for 8 epochs. The results are
shown in Table 3. Our method reaches the best performance
on end-to-point error. For the sub-sampled 4 times meth-
ods [2, 8], we get a promotion more than 0.4. Compared
with the StereoNet 8x [9], we get a 0.17 promotion. But
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Table 3. Comparison on SceneFLow dataset
PSM[2] CRL[18] DispNetC [5] GC-Net [8] StereoNet 8x[9] StereoNet 16x [9] Edge Stereo[20] CSPN[3] Our x4 Our x8 Our x16

EPE 1.09 1.32 1.68 2.51 1.101 1.525 4.12 0.78 0.6755 0.9239 1.7043

Table 4. Comparisons on KITTI2015
Model All pixels Non-Occluded Pixels Time(s)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all
GC-Net[8] 2.21 6.16 2.87 2.02 5.58 2.61 0.9
MC-CNN[27] 2.89 8.88 3.89 2.48 7.64 3.33 67
Displetv v2[5] 3.00 5.56 3.43 2.73 4.95 3.09 265
PSMNet[2] 1.86 4.62 2.32 1.71 4.31 2.14 0.41
EdgeStereo[20] 2.27 4.18 2.59 2.12 3.85 2.40 0.27
StereoNet[9] 4.30 7.45 4.83 4.05 6.44 4.44 0.02
CSPN[3] 1.51 2.88 1.74 1.40 2.67 1.61 0.5
iResNet-i2e2[11] 2.10 3.64 2.36 1.94 2.55 2.15 0.1
Our Four Connected 2.59 5.85 3.13 2.10 4.99 2.58 0.61
Our Six Connected 2.91 7.05 3.60 2.52 5.88 3.08 0.83

for StereoNet 16x, our method is lower with 0.215. The
implicit mapping method seems offer a better smoothness
when the scale becomes large. But from the illustration, the
explicit shows better performance on the details even the
EPE is higher.

4.2.2 KITTI2015

KITTI 2015 is a real-world dataset with street views from
a driving car. It contains 200 training stereo image pairs
with sparse ground-truth disparities obtained using LiDAR
and another 200 testing image pairs without ground-truth
disparities. We split the training data as 160 images for
training and 40 images for evaluation. We use the pre-
trained model from SceneFlow and fine-tune the model on
KITTI2015 for 300 epochs. The comparison with other
state-of-the-art methods is shown in Table 4. We actually
get a lower evaluation error 1.76% than the PSM on the
training data. However, for the testing data, the evaluation
is all below the PSM. Different from the results on Scene-
Flow, the four connected mapping even get better perfor-
mance than the six connected mapping. This result may
be caused by the sparse form of the training data while our
mapping method needs a dense ground truth for training.
The mapping carries out as the determination of the pixel-
to-pixel relations. When the ground truth has the sparse
shape, this kind relation is not clear enough to learn. For
the four connected mapping, the ambiguities of the ground
truth make the learning easier than the six connected map-
ping. But due to our explicit model of the pixel-to-pixel
relations, the sparse ground truth is not supportive to reach
state-of-the-art performance.

5. Conclusions
In this paper, we have presented the explicit context

mapping for stereo matching. The local context can be
modeled by the similarities between low-resolution values
and their influenced high-resolution values. The proposed
learning-based similarity measure can effectively fuse the
low-level geometrical information to the high-level deep

Scale

2

3

4

PSM Four Connected Six Connected

1.030.55 0.45

1.330.84 0.76

2.011.73 1.43

Image Ground Truth

Image Ground Truth

PSM Four Connected Six Connected

0.870.46 0.37

1.090.81 0.68

1.691.56 1.23

Scale

2

3

4

EPE

EPE

EPE

EPE

EPE

EPE

Figure 2. Qualitative analysis on details of the four connected map-
ping on disparity map and six connected mapping on the cost vol-
ume. In each colored box, we observe that the explicit context
mapping keeps better details for all scales. This figure better looks
with a zoom-in view.

feature using the additional distance matrix. The four con-
nected mapping on the disparity shows a great promotion
on efficiency while the six connected mapping on cost vol-
ume can remarkably increase the accuracy. The stereo
matching network with our mapping method reached state-
of-the-art performance on the SceneFlow and comparable
results on the KITTI 2015 with a low computational re-
source.
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